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Abstract

Pharmacogenomics strives to explain the interindividual variability in response to drugs
due to genetic variation. Although technological advances have provided us with relatively
easy and cheap methods for genotyping, promises about personalised medicine have not
yet met our high expectations. Successful results that have been achieved within the
field of pharmacogenomics so far are, to name a few, HLA-B*5701 screening to avoid
hypersensitivity to the antiretroviral abacavir, thiopurine S-methyltransferase (TPMT)
genotyping to avoid thiopurine toxicity, and CYP2C9 and VKORC1 genotyping for better
dosing of the anticoagulant warfarin. However, few pharmacogenetic examples have made
it into clinical practice in the treatment of complex diseases. Unfortunately, lack of
reproducibility of results from observational studies involving many genes and diseases
seems to be a common pattern in pharmacogenomic studies.

In this article we address some of the methodological and statistical issues within study
design, gene and single nucleotide polymorphism (SNP) selection and data analysis that
should be considered in future pharmacogenomic research. First, we discuss some of the
issues related to the design of epidemiological studies, specific to pharmacogenomic
research. Second, we describe some of the pros and cons of a candidate gene approach
(including gene and SNP selection) and a genome-wide scan approach. Finally,
conventional as well as several innovative approaches to the analysis of large
pharmacogenomic datasets are proposed that deal with the issues of multiple testing and
systems biology in different ways.
Keywords bioinformatics; data analysis; methodology; pharmacogenomics; statistics

Introduction

For many decades we have known that patients respond differently to drugs. The
contribution of genetic variation to the interindividual response to isoniazid was described
by Hughes et al. as early as 1954.[1] However, although technological advances have
provided us with relatively easy and cheap methods for genotyping, promises about
personalised medicine have not yet been met.

A recently published trial investigated the clinical value of screening HLA-B*5701 for
hypersensitivity to the antiretroviral abacavir and showed that genetic screening resulted in a
significant reduction in the risk of hypersensitivity to abacavir.[2] However, few
pharmacogenetic examples have made it into clinical practice in the treatment of complex
diseases, although observational studies have described many pharmacogenetic interactions
involving many genes and diseases. For instance, in 1998 Kuivenhoven et al. reported a
pharmacogenetic interaction between response to pravastatin and the cholesteryl ester
transfer protein (CETP) TaqIb polymorphism.[3] Homozygous carriers of the B1 allele
experienced greatest benefit from pravastatin compared with placebo in terms of progression
of coronary atherosclerosis. Ten years and many publications later, this interaction was not
replicated in any other study.[4] Unfortunately, the lack of reproducibility seems to be a
common pattern in (pharmaco-)genetic studies[5,6] although there have been success stories,
such as the aforementioned abacavir–gene interaction. An insightful review article by Evans
and Relling provides a thoughtful elaboration on why pharmacogenomics has not reached
clinical practice to any significant extent.[7] Briefly, the obstacles include: (i) education of
the medical community; (ii) difficulties encountered in conducting definitive clinical
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pharmacogenomics studies (lack of funding, study design
issues), and (iii) technical challenges of genetic testing
comparable to other molecular diagnostics.

In this article we address some of the methodological and
statistical issues within study design, selection of genes and
single nucleotide polymorphisms (SNPs) and data analysis
that should be considered in future pharmacogenomic
research.

Methodological issues

Randomised clinical trials are considered the highest level of
evidence and are essential in convincing practising clinicians
of the value of genotyping. An example is the forthcoming
European Pharmacogenomics Approach to Coumarin
Therapy (EU-PACT) trial, which will evaluate the benefit
of genotyping to coumarin dosing and the risk of clinical
events.[8] However, most commonly used in pharmacoge-
nomics is the case–control design, largely because of its high
efficiency: relatively few patients have to be genotyped
(researchers can select a certain patient group based on
disease status beforehand), the relative ease of patient
recruitment, and late-onset diseases can be used as outcome
measures without follow-up problems. An issue that may
arise in pharmacogenomic studies is the inclusion of subjects.
Subjects are asked to give their informed consent to the
researcher to collect a sample and analyse the DNA. Privacy
is always of high importance and patients’ anonymity is
therefore guaranteed in publications. However, it is impor-
tant to realise that as few as 75 independent SNPs could
unequivocally lead to an individual person,[9] although in
practice we have not experienced this as a major problem in
the process of data collection.[10]

In recent years, traditional issues (pros and cons) relating
to the different designs of epidemiological studies have been
discussed in countless comprehensive reviews.[11,12] For that
reason, we focus on study design specific to pharmaco-
genomics: candidate gene approach (CGA) versus genome-
wide scan, and confounding (population structure).

Candidate gene approach and genome-wide
association studies
A pharmacogenomic study with a CGA typically involves a
couple to tens of SNPs within each candidate gene that is
possibly involved in the response to a particular drug. In
contrast, a genome-wide association study (GWAS) seeks to
identify variants that modify the response to a certain drug
throughout the whole genome. CGA and GWAS both have
their pros and cons, and differ in several significant ways. To
begin with, the number of SNPs for a CGA can range from
dozens to thousands, whereas in a GWAS between 100 000
and more than 1 000 000 SNPs are genotyped. Importantly,
in contrast to a GWAS that comes with a fixed standard
array, custom arrays for CGA studies allow SNPs to be
selected by the researcher. A CGA on a genome-wide scale is
also possible, although the SNPs in the selected candidate
genes will only be those available on the standard arrays.

A GWAS is largely data driven (hypothesis-free) whereas
a CGA is hypothesis driven because the selection of genes
and SNPs is based on prior (expert) knowledge. The result is
that GWAS can detect SNPs in genes that were not

considered candidate genes before, or SNPs located outside
of genes. It is very unlikely that these SNPs would have been
found using a CGA. On the other hand, a CGA may detect
associations that would not have been identified in a GWAS
because of power issues (discussed below). Lastly, although
the costs of a GWAS have plummeted, budget constraints
may still only allow a CGA.

For the CGA, the first step is the selection of genes related
to the research question. Candidate genes can be genes that
have previously been reported to be associated in the
research field of interest. In addition, genes involved in the
pharmacokinetics (absorption, distribution, metabolism and
elimination) and pharmacodynamics (drug targets) of a drug
should be considered as candidate genes. Finally, genes
related to the underlying disease or intermediate phenotype
may be important for the pharmacogenomics of a certain
drug. In addition to a straightforward manual literature
search, more advanced methods are now available, one
example being a method by Hansen et al.,[13] who describe a
candidate gene-selection method for pharmacogenomic
studies that specifically ranks 12 460 genes in the human
genome according to the potential relevance to a drug and its
indication. Interestingly, it uses gene–drug, gene–gene, and
data from drug–drug similarities to construct a network for
gene ranking. For several drugs, they were able to identify
new candidate genes.[13]

SNPs come in different forms: synonymous, in which the
mutation does not change the polypeptide sequence, and non-
synonymous, in which the polymorphism results in a
different polypeptide sequence. SNPs in non-coding regions
may also be important because they can affect processes such
as expression and gene splicing. Different types of SNPs
should be considered for a CGA: SNPs that were previously
associated, SNPs with functional annotation (coding SNPs)
and tag SNPs. Coding SNPs can be found in the dbSNP
database of NCBI (www.ncbi.nlm.nih.gov/SNP). The main
source for many SNPs that are available is the HapMap
project (www.hapmap.org) in which 270 individuals with
different ancestry have been genotyped for over 3.5 million
SNPs. Within the HapMap, so called tag SNPs have been
identified in four populations. Tag SNPs are in strong linkage
disequilibrium with other SNPs so they can serve as a proxy
for the other SNPs, thus tremendously reducing the number
of SNPs needed to contain the genetic variance of a gene.[14]

Different methodologies for SNP selection are available
which not only take advantage of tag SNPs but also give the
option of including coding SNPs and defining the size of the
flanking region. Two such web-based services based
primarily on the international HapMap project are
QuickSNP[15] and Tagger.[16] It is important to consider the
r2, which is a measure of the required linkage disequilibrium
strength (usually set at 0.8), and the allele frequency of a
SNP in the research population, as a low allele frequency
may ultimately lead to low power.

The first pharmacogenomic GWASs are starting to
emerge.[17,18] When designing a GWAS, one should be
aware of the computational burden, as up to more than
1 million variables are available in the epidemiological
dataset. Furthermore, the recommendations made by the
Wellcome Trust Case Control Consortium (WTCCC) should
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be considered.[19] First, the WTCCC stresses the importance
of careful quality control, as small systematic differences can
easily produce effects that may obscure true associations.
Second, the potential for hidden population structure is a
phenomenon that should be recognised (discussed below).
Third, even with many cases and controls (2000 and 3000,
respectively), the study power is limited to the detection of
common variants with large effects only. Therefore, meta-
analysis of existing GWAS is encouraged if possible.
Furthermore, the WTCCC underlines the importance of
replication studies to confirm true associations, and func-
tional studies to gain more insight into, and mechanistic
understanding of, the underlying biological molecular
mechanisms.[19] Because tag SNPs that show an association
are likely to be in linkage disequilibrium with the causal
variants, re-sequencing of this region is of major importance
for the identification of causal variants.

Population structure
Dealing with confounding in epidemiology is a huge
challenge and has been the subject of many discussions.[20]

Besides the conventional confounding in epidemiology,
pharmacogenomic research is faced with other potential
confounding such as ‘hidden population structure’ (or
population stratification). This phenomenon is present
when genetically incompletely mixed distinct subpopulations
exist within the research population.[21] Associations may
then reflect confounding due to the different prevalence of a
variant allele and prevalence or magnitude of the outcome of
interest. Moreover, the exposure to a drug can be unevenly
distributed among genetically different subgroups. Therefore,
the gene–drug interactions may be biased by the population
structure.[21]

Minimising irrelevant allelic differences in groups can be
achieved by sampling cases and controls from the same
population and/or by matching cases and controls on the
basis of genetic background using surrogate markers such as
geographic proximity, physical characteristics and self-
reported ethnicity.[22]

Most widely used methods to detect and adjust for this
problem are genomic control, structured association methods
and the EIGENSTRAT method.[23] The genomic control
method, developed by Devlin and Roeder, corrects for
variance inflation caused by population structure, using SNPs
that are unrelated to the outcome (case or control).[24] The
variance inflation factor, denoted by l, is based on the
assumption that l is the same across the genome for all null
SNPs, and can be calculated by dividing the median of the
Armitage test statistic for the ‘null’ SNPs by 0.456 (the
median of a chi squared with one degree of freedom
[c2 distribution, df = 1]). l is expected to be larger than 1 but
in the absence of population stratification may also be
smaller than 1 (if this is the case, it is suggested to be set to
1[25]). Subsequently, the Armitage test statistic for the
candidate SNPs are divided by l. This method has also
been extended for continuous outcome measures.[26]

In addition, Pritchard and colleagues developed a two-
phase structured association method that can test for
association in the presence of population structure.[27] The
first phase uses the ‘null’ SNPs to identify the presence of

population structure – assuming any of the associations to be
the result of population structure – to subsequently assign the
individuals to putative subpopulations. In the second phase,
associations are tested conditionally on the subpopulation
allocation.[27] Of note, the result of this computationally
demanding method is highly sensitive to the assumed and
unknown number of subpopulations.

Finally, a popular tool to detect and correct for population
structure is the EIGENSTRAT method,[28] based on principal
component analysis. First, principal component analysis is
applied to genotype data (‘null’ SNPs) to infer continuous
axes of genetic variation. Second, using the residuals of
linear regression, the observed genotypes and phenotypes are
continuously adjusted by the amounts attributable to ancestry
along each axis. Finally, use of the ancestry-adjusted
genotypes and phenotypes used to calculate association
statistics takes into account the population structure.

Data analysis

The relationship between variation in DNA sequence and
clinical endpoints is likely to involve gene–gene (epistatic)
interactions. The term epistasis is not unequivocal,[29,30] as it
is used in different contexts. Generally, epistasis can be
defined as either biological or statistical. Biologically,
epistasis is the physical interactions among proteins or
other biomolecules that affect the phenotype. Statistically,
epistasis is generally defined in terms of deviation from a
model of additive effects.[30] Gene–gene interactions may
actually be a plausible explanation for non-replication of
positive associations, since these interactions may vary
between populations.

Traditional statistics is not well suited to deal with
gene–gene and gene–environment interactions on a large
scale. In pharmacogenomics we are faced with an
additional challenge – the primary goal of our analyses
is not the genetic association with the phenotype, but
rather the effect of genetics on the association between a
certain drug and the phenotype.

Multiple comparisons in regression models
As the number of SNPs increases, data analysis becomes a
statistical challenge because of the multiple testing (compar-
isons) problem. Generally, the P-value threshold that is
considered significant in biomedical research is set at 0.05.
This P value is not appropriate when testing many variables,
as the frequency of type I errors will increase. Testing
20 random variables will give a 64% chance of finding one
significantly associated SNP at random (P (≥ 1 significant
result) = 1 − P (no significant results) = 1 − (1 − 0.05)20 =
approx 0.64). There are different ways of dealing with this
issue. The Bonferroni correction can be applied by setting the
significance cut-off at the P value for one test (i.e. 0.05)
divided by the number of tests.[31] When testing 100 SNPs,
the null hypothesis will then only be rejected when the
P value is below 0.05/100 = 0.0005. In (pharmaco)genomics,
the Bonferroni correction can be considered too stringent, as
it may wipe out many small effects that one may actually
expect (increased rate of type II errors). One of the reasons
Bonferroni correction is too conservative is that many SNPs
are not independent.
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Another way of dealing with multiple testing is the
increasingly popular false discovery rate (FDR) approach.[32]

The FDR estimates the expected proportion of false positives
among the tests declared significant, expressed as a q value.
In the case where the FDR gives a q value of 0.2 for
50 significantly associated SNPs, the proportion of false
positives would be 20% (10 SNPs). This approach is very
different from using a threshold P value. Only a few of the
50 SNPs that were associated using the FDR would have been
associated when applying a Bonferroni correction. There is
no threshold q value that is considered standard. Depending
on the study (number of patients, number of SNPs, biological
plausibility), different q values might be chosen.[33]

Performing numerous tests that are necessary to analyse
the large number of SNPs, epistasis, the exposure to a drug,
and drug–/gene–environment interactions may have a detri-
mental effect on the ability to detect small effects because of
the avalanche of multiple testing issues. It may therefore be
necessary to deviate from conventional methods to other
methods. Data analysis within the Bayesian framework, for
example, may be of great value as there is no penalty for
multiple analyses of the data. After all, the prior probability
of an association should not be affected by the tests that the
investigator chooses to carry out.[23]

An alternative multi-stage analysis strategy proposed for
pharmacogenomic data exploration is shown in Figure 1. The
first step entails variable (SNP) selection and ranking, where
the number of potentially predictive SNPs is significantly
reduced. Second, a set of SNPs with high predictive potential
is refined, and a descriptive/predictive model is fitted, in order
to reverse-engineer the biological relationships underlying the
system in question. Finally, traditional statistical methods are
used to calculate odds ratios or relative risks for the specific
associations between SNPs, phenotypes, exposures and other
epidemiological factors.

For step 1, conventional univariate methods (such as
logistic regression or simple contingency tables) can be used
to rank SNPs and to reduce them to a smaller subset (several
hundred SNPs) based on the association strength. The choice
of the P-value cut-off point is somewhat arbitrary (e.g. ‘top
100’), but should ideally be a function of the data itself (i.e.
how many SNPs actually carry the signal, as opposed to
noise) and thus should probably depend on the number of
SNPs that were tested. This univariate approach (known as
‘filtering’ in computer science vernacular[34]) does not take
into account the interactions that may play a role in
predicting the outcome. An alternative variable ranking/
selection method is a random forests (RF) classifier.[35] RF is
capable of accounting for some epistatic interactions,
because it aggregates many (thousands, usually) single
classification and regression trees (CARTs[36]). A single
decision tree is generated by recursively partitioning the data
set into subsets. In the whole data set the best possible

predictor of the case status is selected to split the root node
into two ‘child’ nodes (e.g. smoking, non-smoking). In the
next steps, recursively, these child nodes are split again,
using the best remaining predictors. This process continues
until either all cases and controls are separated, or the
terminal nodes are too small to split. To build an RF, two
randomisation mechanisms are added. First is bootstrapping,
where a number of randomised samples are generated from
the original dataset by using resampling with replacement.[37]

The second randomisation mechanism is the selection of a
random (and small) subset of predictors (SNPs) to build each
single tree. Once a ‘forest’ (consisting of thousands of
randomised single decision trees) is built to classify a new
observation, each tree in the forest classifies it separately; the
class that gets the most votes predicts the class of the new
observation. RF is capable of accounting for variable
interactions because many possible variable combinations
are encountered repeatedly within the forest. Another aspect
of RF that makes it particularly attractive for large-scale
studies is that it is more computationally efficient than
comparable classifiers when the number of variables is high.
Numerous RF implementations are available.[38–40]

In step 2, a set of SNPs with high predictive potential will
be selected, and the relationships between these SNPs and
other factors will be ascertained. Methods like Bayesian or
belief network (BN) modelling, multifactor-dimensionality
reduction (MDR), boosted classifiers and also RF are suitable
for this step.

A BN provides a systems biology analytic approach for
identifying interactions between genetic, physiological and
environmental variables, including the outcome of interest.[41,42]

A biological network modelling genotype-to-phenotype
relationship is represented visually as a graph consisting of
nodes (indicating discrete and continuous variables, such as
SNPs, environmental factors, metabolite concentration, pheno-
types, etc.) and directed edges (or arrows) that link mutually
dependent nodes. Absence of an edge between two nodes
indicates their conditional independence. The edge directionality
is somewhat arbitrary and is not intended to imply causation;
rather, it is used for mathematical convenience to distinguish
between the ‘parent’ and the ‘child’ nodes. The edge strength
indicates the relative magnitude of the dependency between the
two variables, given the other interrelationship, and is measured
as the marginal likelihood ratio test of the BN with the edge
versus the otherwise identical BN without the edge. An edge
between twoSNPs is indicative of strong linkage disequilibrium;
therefore, BN can simultaneously take into account linkage
disequilibrium while doing genotype–phenotype association
analyses. Since we are interested in predicting the efficacy of a
drug on the outcome of interest, the BN can be reduced to a sub-
network of the outcome of interest and a limited number of
immediately predictive variables. A formal conceptualisation of
such a sub-network is theMarkov ‘blanket’.[43] By definition, the
Markov blanket of node A consists of the parents of A, the
offspring of A and the nodes that share an offspring with A
(Figure 2). Given its Markov blanket, the outcome variable is
independent of all the other variables in the network.
Dependencies within the Markov blanket may be checked for
statistical robustness using bootstrapping or subsequent standard
statistical tests. Because the BN data analysis can be carried out

Data exploration
SNP ranking

Selecting optimal
model

Conventional
methods

Figure 1 A strategy for analysing large (pharmaco)genomic datasets.
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simultaneously with other analysis methods, the level of
overfitting (sensitivity/specificity balance) can be adjusted so
that the number of predictive variables (SNPs) generated is
roughly the same across the whole palette of analysis methods,
and the predictive variable rankings generated by the different
analysis methods can be compared directly. Alternatively,
simulation studies can be performed to ascertain the optimal
balance explicitly.

Recently, BNs were used to study the pharmacogenomics
of short-acting bronchodilator medication.[44] Himes et al.
reported 15 of 426 SNPs in 15 of 254 genes to be predictive of
bronchodilator response using a BN model with fair accuracy.
They compared the BN (multivariate) model with a single-
gene approach, and demonstrated that the BNmodel wasmuch
better at predicting bronchodilator response, suggesting that
some of the relationships among SNPs and bronchodilator
response were potentially true biological relationships. Inter-
estingly, they found two relationships between two SNPs and
bronchodilator response, a relationship that would not have
been captured using traditional statistics.[44]

Another efficient descriptive/predictive modelling method
is boosted classifiers.[45] While RF is a robust and scalable
classifier, the complexity of the generated model (thousands
of single decision trees) means that it is hardly interpretable
by a human expert. On the other hand, single decision trees
such as CART are not particularly robust. An attractive
compromise is the boosted classifier in which there is more
than one tree but their construction is adaptive rather than
random (each new tree is aimed primarily at the observations
misclassified by the preceding tree), and the number of trees
is low (no more than a dozen, typically). The model then can
be expressed as a set of ‘if/then’ rules that also cluster the
sample into groups of similar individuals, for example, ‘out
of 200 individuals, 24 have SNP1 = AA, SNP2 = AG and
SNP3 = AC; out of these 24 individuals, 22 are cases, and
2 are controls’. Therefore, by representing the resulting
decision tree models as sets of rules (‘rule sets’), we perform
both classification and sample clustering, thus accounting (to
some extent) for genetic heterogeneity within the sample.
Various implementations of boosted classifiers are
available.[40,46,47]

MDR is also a computer-science based method,
developed by Ritchie et al.[48] for the explicit identification

and characterisation of high-order gene–gene and gene–
environment interactions in relatively small-scale studies.
MDR is capable of doing so by reducing genotype
predictors from multiple dimensions to one by pooling
multilocus genotypes into high- and low-risk groups. In
other words, a one-dimensional multilocus-genotype
variable is computed for each model (combination of
predicting variables).

A good example of how MDR has been applied in
pharmacogenomic research is that of Motsinger et al., who
investigated the effect of variants in a set of selected genes
on the pharmacokinetics and treatment response to efavirenz.
They showed that combinations of variants in CYP2B6 and
ABCB1 were the most predictive for the 24-h area under the
plasma–concentration time curve for efavirenz and for
virologic failure and toxicity failure.[49] Unfortunately, the
number of variables that can be included in the model is
limited; this is the price one pays for addressing the non-
additive interaction issue explicitly. MDR software is
publicly available at www.epistasis.org/software.html.

It should be mentioned that many other novel (mostly
computer science-derived) methods can be used for variable
selection and descriptive and predictive modelling. A useful
internet resource and a convenient starting point for further
exploration of data mining software can be found at www.
kdnuggets.com/software/index.html.

Step 3 completes the analyses by using conventional
statistical methods to calculate odds ratios or hazard ratios,
allowing a direct epidemiological interpretation. This is
beyond the scope of this article.

Future perspectives

Although there are several well-established examples,[2,50–52]

pharmacogenomics is still relatively uncommon in clinical
practice. Concomitant to the issues we have discussed in this
paper, future research should benefit from the technical
advantages that modern technology has to offer. Pharmaco-
genomics is a staggeringly complex research field that
requires a multi-disciplinary approach. Therefore, genome-
wide methods at the level of expression, genotype scans and
proteomics should be combined with what is already known
about a drug. In addition, bioinformatics and ontology-based
approaches should play important roles in sorting through the
large amounts of data currently available.
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